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AMtraet--Multiple steady-state solutions have been found theoretically for a two-phase natural circula- 
tion loop. This bifurcation phenomenon is attributed to the nonmonotonic behavior of the buoyancy and 
friction forces, and the discontinuities due to transitions between two-phase flow patterns. The paper 
outlines a general and consistent modeling method to describe two-phase natural circulation at steady 
state. The solution of the one-dimensional governing conservation equations is performed by a 
combination of analytical and numexical stages. The method is implicit, to treat the highly nonlinear 
problem by multinested iteration loops. Results are presented and discussed for the multiple solutions of 
the flow rate, temperature, quality and void distributions and two-phase elevations. Pressure effects are 
also studied. A comparison with available data shows that the theoretical model simulates the important 
characteristics of two-phase thermosyphons. 

Key Words: two-phase natural circulation, two-phase thermosyphon, two-phase free convection loop, 
bifurcation, multiple steady-state solutions 

1. I N T R O D U C T I O N  

Natural circulation loops (thermosyphons) appear in geophysical and geothermal processes and 
have a wide range of  applications in diverse energy conversion systems, like solar heating devices, 
magneto hydrodynamic generation of  electricity and emergency core cooling of  nuclear reactors. 
Several of  these thermosyphons involve two-phase flows. The reviews of  Zvirin (1981) and Greif  
(1988) summarize the theoretical and experimental investigations of  the steady state, transient 
behavior and stability characteristics of  natural circulation loops, with the focus on single-phase 
thermosyphons. 

It is well-known that free convection loops exhibit some peculiar stability features. These have 
an obvious fundamental physical interest and important operational implications in energy 
conversion systems. Three different types of  instabilities have been found, theoretically and 
experimentally, in thermosyphon systems (except for the possible appearance of  Rayleigh-Benard 
closed cells), cf. Zvirin (1985): 

(1) The onset of  bulk flow around the loop. 
(2) The instability of  a steady loop flow, caused by oscillations growth. 
(3) Multiple steady-state solutions, i.e. metastable equilibrium or bifurcation. 

Beside these instabilities, it has been found that "chaotic" behavior sometimes exists (cf. Har t  
1984). Bifurcation in single-phase thermosyphons has been discovered in systems with parallel 
branches (Chato 1963; Jeuck et al. 1981), in loops with throughflows, i.e. mixed convection (Mertol 
et al. 1981), and double-diffusive natural circulation (Rubenfeld & Siegmann 1977; Zvirin 
1987, 1991). The processes in these loops are more complex than in "simple" ones, where the flow 
and heat transfer are governed by buoyancy and friction only. 

It is noted that bifurcation phenomena occur in other flow systems, e.g. the well-known hydraulic 
jump in single-phase open-channel flow with a pressure head. Many two-phase flow systems exhibit 
multiple solutions, e.g. in a multitude of  parallel channels, as reviewed by Hetsroni (1982). Multiple 
solutions are also associated with other flow phenomena, e.g. oscillations due to density waves. An 
important conclusion was derived by Sen & Trevifio (1983) and Ramos et al. (1985), implying that 
multiple solutions can be obtained for two-phase thermosyphons by one-dimensional models for 
constant and variable areas. 
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Two-phase natural circulation phenomena occur in reboilers, frequently used in the chemical 
engineering industry. McKee (1970) surveyed the relevant literature and suggested flow and heat 
transfer correlations for design purposes. Early work on two-phase natural circulation relevant to 
nuclear reactors included experiments aimed at measuring parameters such as flow rates and heat 
transfer coefficients (Piret & Isbin 1954) and studying flow oscillations (Wissler et al. 1956). The 
application of thermosyphons in this field has attracted increased interest following the accidents 
in TMI and Chernobyl. Several experimental rigs were constructed and tested (e.g. Kiang & Marks 
1981; Cundy & Ha 1982; Nguyen-Chi & Banerjee 1984), which provided data and information 
about various two-phase natural circulation processes, including transitions between flow regimes. 

The need for practical safety criteria and simulation of transients such as small-break natural 
circulation, lead to the development of scaling laws to interpret results obtained from experimental 
models of various sizes and to predict from them the behavior of prototypical reactor systems. 
These derivations (e.g. Ishii & Kataoka 1983; Ishii et al. 1986; Kiang 1985; Zvirin & Sursock 1987) 
are based on dimensional analysis of the governing conservation equations, without actually 
solving them. The stability of flow systems with multiple parallel channels is governed by different 
dimensionless groups (cf. Bour6 & Mikaila 1967; Ishii & Zuber 1970). Bour6 & Mikaila (1967) 
presented a stability diagram which uses dimensionless velocity and enthalpy as parameters. Ishii 
& Zuber (1970) used subcooling and phase-change numbers for the construction of their stability 
chart. There does not yet exist a general consistent theoretical model to describe and simulate 
two-phase natural circulation loops. The few existing theoretical models, mostly one-dimensional, 
apply to specific loops, are limited by basic simplifying assumptions and do not take into account 
the various two-phase flow regimes and the transitions between them. 

Reed & Tien (1987) studied theoretically and experimentally a thermosyphon enclosed in a 
cylinder, with evaporation at the bottom, an upwards loop flow inside an inner tube and 
condensation in the annulus around it. Ardron & Krishnan (1984) studied the stability of a certain 
loop, but their method is not accurate because they did not consider all the equations which govern 
the stability characteristics. Duffey & Sursock (1987) developed a theoretical method for calculating 
steady-state situations in two-phase thermosyphons. Although some of the assumptions in their 
method are quite simplified and most of the phenomenological parameters are based on average 
loop properties, the fundamental physical features are kept. Thus, they could show the important 
phenomenon of a local maximum for the flow rate when the input power is increased. This had 
been previously obtained in the experiments of Loomis & Soda (1982) and Shimeck & Johnsen 
(1984). One disadvantage of the model of Duffey & Sursock (1987) is that no attention is given 
to transitions between flow regimes and patterns. 

As mentioned above, available information about bifurcation phenomena in two-phase natural 
circulation is quite scarce. Multiple steady-state solutions are not easy to detect, especially if some 
of them are unstable. The existing theoretical methods are not always capable of predicting such 
solutions, e.g. because they lack the details of transitions between flow regimes. As explained above, 
the mechanisms leading to bifurcation require triggering which extends beyond the balance of 
buoyancy and friction forces in a "simple" loop. Ramos et al. (1985) indicated that bifurcation 
exists in two-phase thermosyphons, but their theoretical model is an extension of that for single 
phase, assuming constant friction and heat transfer coefficients. Such assumptions are too 
simplified for the description of two-phase flow. 

A more extensive literature survey appears in Knaani (1990). The objective of the present work, 
stemming from this survey, summarized above, is to develop a more general and consistent 
theoretical method to characterize two-phase natural circulation. The next section includes 
derivation of the mathematical model, based on integral momentum equation, and a flow regime 
map adopted from a drift-flux representation with appropriate correlations for friction, heat 
transfer and void-quality. Sections 3 and 4 describe the analytical-numerical solution procedure. 
Results are presented in section 5, for an example of a simple geometry loop, in order to 
demonstrate application of the method and to study several important and interesting phenomena, 
including bifurcation (multiple steady solutions), pressure effects and sensitivity to the choice of 
the flow regime map. 

The analytical treatment of the governing differential equations leads to a set of nonlinear 
algebraic equations. It is noted that there is no guarantee, a priori, that a solution would always 
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exist for such equations, particularly because of the discontinuity of the correlations at the 
transition between flow regimes. For example, Grossman et  al. (1987) developed a theoretical 
method to analyze cooling absorption cycles, and could not obtain a solution in the whole range 
of the parametric space. Here the results were obtained for a continuous wide range of system 
parameters; input power, pressure and geometry, and reconstruct trends which have been 
previously observed in experiments, i.e. local maxima of the flow rate curves as functions of the 
power and pressure. 

2. THE THEORETICAL MODEL 

The loop considered here, shown schematically in figure l, consists of heated and cooled branches 
(heat source and sink) connected by short sections at the top and bottom. Knaani (1990) outlined 
a general consistent approach to describe natural circulation in more complex systems, relevant 
to the cooling loops of nuclear reactors, with hot and cold legs and arbitrary elevations of the 
source and sink. He derived the transient conservation equations governing the flow and heat 
transfer in such two-phase thermosyphons. The method is based, in part, in some previous 
treatments mentioned above (e.g. Ishii & Kataoka 1983; Ishii et  al. 1986; Kiang 1985; Zvirin & 
Sursock 1987). Application of the method for the loop in figure 1 has been chosen in order to 
demonstrate its use and to study several important processes, phenomena and effects. 

Two operational modes of the natural circulation system are studied: either with a pressurizer 
(or expansion tank), not shown in figure 1, or without it. In the first case the pressure is specified 
a priori ,  determining the fluid properties, including T~t. In the second case, the total fluid mass 
(inventory) of the completely closed loop is given, and the pressure is obtained as part of the 
solution. 

The governing equations are written in one-dimensional form for the steady state, where s is the 
coordinate running around the loop and Z is the vertical one. Thus, all the variables are averaged 
over the cross section. Other approximations are that the subcooled length can be neglected, there 
is no condensation in the riser and a drift-flux equilibrium approach is taken for the two-phase 
flow regimes. Incompressible flow is considered, and the Boussinesq approximation is adopted, 
whereby the fluid properties are taken as constant except for the density in the gravity term of the 
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Figure 1. Schematic of the two-phase natural circulation loop. 
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momentum equation, where: 

p = pL[1 -- fl(T -- T~t)] single phase [la] 

and 

p = pL[1 -- (1 -- 7)E] tWO phase; [lb] 

T(s) and e(s) are the temperature and void fraction, fl is the thermal expansion coefficient, V is 
the density ratio, y -= PG/PL and TR is a temperature of the secondary fluid (or ambient) of  the sink, 
taken as constant. 

The continuity equation yields the result that the mass flow rate in the loop is uniform, thus for 
steady state rh = const, a priori unknown. The momentum equation is written in a general form, 
for both the single- and two-phase regions: 

N ~ +~sL(1-Op N P g - 2 K ~  2' [21 
where A = ~d2/4. Except for the terms representing inertia, pressure, gravity and friction forces, 
the equation includes the term of  the drift stress. It depends on the local drift-flux velocity, UGu, 
characterizing the imbalance of  the velocities of  the phases. For  single-phase flows this term 
identically vanishes: UG, = 0 for pure vapor and E = 0 for pure liquid. K '  in [2] is the local friction 
parameter. As customary in problems of  natural circulation, the momentum equation, [2], is 
integrated around the loop to eliminate all the gradient terms. This gives 

K 
- g B  = 0, [31 

where K is the overall friction parameter 

K = f  [(Zc + Zs) + ~2(2L - Zc - Zs)]; [4] 

f and ~2 are the single-phase friction coefficient and the two-phase multiplier. B is the buoyancy 
integral 

.~p dZ  = pL{[1 -- ¢¢(1 -- y)](L -- Z¢) - [l - gs(l - )~)](L - Zs) B 

+ Z¢[1 - fl(T¢ - T~t)] - Z,[1 - fl(T~ - T~t)]}, [5] 

where the mean temperatures and void fractions in the heat source and sink are defined by 

f? ;? (T~ -- T=t) dZ  = Z,(T~ - T~,t), (T¢ - T. , )  dZ  = Z~(T¢ - T~,t) [61 

and 

;: j: 6 d Z  - ( L  - Z~)g:s, E~dZ - ( L  - ZJi~;  [71 
s c 

L is the height of  the loop and Z~ and Zo are the two-phase elevations (see figure 1). The subscripts 
c and s denote the source and sink. 

The energy equation is written separately for the single- and two-phase regions in the heated 
branch, 

dT  
rhcp - ~  = q 0 <~ Z <~ Zc [8a] 

and 

dx 
rhHLG - ~  = q Z¢ ~< Z ~< L [8b] 
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and in the cooled channel, 

and 

dT 
thCp - ~  = hsp rrd( T - Ta) 0 ~< Z ~< Z~ [9a] 

d x  
thHLG ~ = htr, rrd(T,t  - Ta) Zs ~< Z < L; [9b] 

where x is the vapor quality, q is the power input per unit length, HLG is the latent heat, h~p and 
hip are the single- and two-phase heat transfer coefficients in the sink. The latter is for condensation 
in downwards flow. In general q may depend on Z; here it is taken as constant, q = Q/L ,  where 
Q is the total input power. 

The boundary conditions are continuity of the temperature at the bottom and the quality at the 
top: 

T ~ = T s - T o  at Z = 0  [10a] 

and 

x c =  x s =  xl at Z =  L. [10b] 

For cases where the whole loop is single phase the energy equations are [8a] and [9a], and the top 
boundary condition is continuity of the temperature also. 

In order to complete the mathematical formulation, i.e. closure of the model, it is necessary to 
specify the parameters f, ~ ,  h~p and htp, and to employ a relation between E and x. It is noted that 
the method developed by Knaani (1990), outlined above, is general and can be applied with any 
model representing two-phase flow and heat transfer. Here the drift-flux approach has been used 
and phenomenological correlations for the parameters have been chosen as described below. These 
parameters depend, in general, on the (unknown) flow rate, the vapor quality, the void fraction 
and the flow regimes and two-phase flow patterns. The coefficients f, 4 2, h~p and htp are taken as 
independent of the axial coordinate, i.e. their values express means over the respective sections. 

The friction coefficient, f ,  is taken from the Moody diagram and the two-phase multiplier, ¢~2, 
from Chisholm (1967). For the heat transfer parameters the internal convection coefficients are 
used, because it is assumed that the resistance is much smaller in the tube wall and the external 
surfaces, where strong secondary forced flow usually prevails, hso is taken from standard 
correlations for laminar and turbulent flows and htp for the condensation region from Collier 
(1972). 

The relation between the void fraction and quality, needed in the drift-flux model used here, is 
written as in Hetsroni (1982): 

XpL 

Ec -- PLPG UGu " [11] 
Co[XpL "Ji- (1 -- x)pG] + - -  

rh 

The drift-flux velocity, UGu, and the distribution parameter, Co are taken from Kaizerman et al. 
(1982). They depend on the two-phase flow patterns, thus a flow regimes map is needed, which 
is taken from Kaizerman et al. (1983). All the details and various expressions for the correlations 
appear in the appendices of Knaani (1990). The relation for E(x), [11] is used for the heat source, 
in which boiling upwards flow occurs. No equivalent correlations have been found for the 
condensing downwards flow in the heat sink. Therefore, a linear relation between E and x is 
assumed there. The sensitivity of the results to the transition limits in the two-phase flow regimes 
map is studied, as will be seen below. It is finally noted that there are other models to represent 
two-phase flow regimes and patterns, e.g. the drift-flux model of Chexal & Lellouche (1985/1986) 
and the more basic approach by Barnea (1987) of directly using the phase superficial velocities. 
In the first stages of this work some attempts have been made to employ other models, and the 
correlations and map of Kaizerman et al. (1982, 1983), as well as the other flow and heat transfer 
correlations, were then chosen because they proved to be more convenient for both the theoretical 
modeling and the numerical algorithm. 
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For generality of the solution procedure, the governing equations are transformed to dimension- 
less form. For  this, scaling of the variables is defined by 

z T - T ~  
z = ~ ,  0 -  A ~ '  coXrh,p, [12] 

where 

Q 
A T  = T~, t - Ta, riasp - cpAT"  [13] 

As in the other problems of natural convection, there is no characteristic velocity here. The 
reference flow rate, msp, is chosen as that at the limiting case where the bottom temperature equals 
that of  the ambient and the top one just reaches saturation. 

Introduction of  [12] and [13] into [4]-[11] yields the following formulation. The momentum 
equation is reduced to 

F ( c o )  = N b f b  - co2 = 0, [14] 

where the dimensionless bouyancy integral is given by 

b = (1 - 7)[~¢(1 - z¢) - gs(1 - zs)] +/~AT[(O¢ - 0~) + (Zs - z~)] [15] 

and the mean values ~ and 0 are defined by 

- eidz,  O i - -  Oidz;  i = c , s .  [16] 
gi - 1 z i  , zi 

The energy equations for the heat source are transformed to 

dO 1 
0 ~<z <~z¢ [17a] 

dz - co 

and 

and those for the sink to 

and 

dx St 
- - = - -  z¢<~z <<. 1; [17b] 
dz co 

dO NssP0 0 ~<z ~<zs [18a] 
dz co 

dx _ Nst p 
zs <~ z <~ 1. 

dz  co 

The dimensionless groups which appear in these equations are defined by 

2gp ~. L A  2 Cp A T _ hsp ndL  N - -  htp ndL  A T 
' , s tp ~ ~ " Nbr = -- Krhs2p St  = HLG Nss p - -  cprhsp " 'LGmsp 

The dimensionless form of  the boundary conditions is 

0c= 0~= 00 a t z = 0  

[18b] 

[193 

[20a] 

and 

xc=Xs-X~ a t z = l .  

Finally, the relation for e¢(x), [11], reduces to 

x¢ 

Co[xo + (1 - xc)~] + - -  

where UGo --= PL A Ucu/msp. 

~ U G u  

co 

[20b] 

[21] 
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3. THE STEADY-STATE SOLUTION 

The solution procedure for the above set of simultaneous integro-differential equations consists 
of a combination of analytical and numerical stages. The flow charts in figures 2a-c summarize 
the algorithm described below and the numerical procedure outlined in section 4. First, the energy 
equations are solved in terms of the unknown constant, ~o. The solution of [17a, b] for the heat 
source yields the linear distributions of the temperature and quality: 

z 
0 ~ = 0  o + -  O~<z~<z~ [22a] 

oJ 

and 

St 
x, = - -  (z -- zc ) z,~<z~<l. [22b] 

(D 

The dimensionless bottom temperature, 0o, is also unknown. The source two-phase elevation, zc, 
is that where the temperature reaches saturation: 

zc = ra(1 - 00). [23] 

It is assumed that the subcooled boiling region is negligible. For the heat sink the solution of the 
energy equations [18a, b] is 

O~=Ooexp[-~] O , z  <~z~ [24a] 

and 

x~ = Nstp (z -- z~) z~ ~< z ~< 1, [24b] 
O) 

Calculate Oc(Z ) [22a] / 
Xc(Z ) [22b1 

Calculate z c from [23] / 

Calculate 0s(Z ) [24a] / 
xs(z ) [24b] 

Obtain z s [26] 

N / .Double-nested 
/ iterative method 

y Flow Chart A 

Loop with given 
inventory. Triple- 

nested iterative method 
Flow Chart B 

Figure 2a. Flow chart of the solution algorithm. 
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Figure 2b. Flow chart (A) of the numerical procedure for a loop with a pressurizer. 

where use has been made of the condition that the flow returns to single phase, xs = 0, at the 
elevation z~. The boundary condition [20b] of  continuity of  the vapor quality at the top is applied 
now to eliminate x~ from [22b] and [24b]: 

St Nstp 
x l = - - ( 1 - z c ) =  ( l - z ~ )  a t z = l .  [25] to co 

This leads to the following relationship between the two-phase elevations: 

St 
z~ = 1 - ~ (1 - zc). [26] 

As mentioned above, the bottom temperature is not known. In order to find it, the saturation 
condition, 02 = 1 at z = z~, is employed. Then using [24a], [26] and [19], the following expression 
is obtained: 

00=exp( z) expi  -- - -  / e x p / - - - / e x p ~ - -  L h,.to _J \ co) \h,p 
This is an implicit equation for 00 in terms of  co, which, in general, has to be solved numerically, 
by an iterative method, after solving the energy equations (as explained below), because htp depends 
on x~. Since both to and 00 are unknown, the general iterative solution procedure is at least 
double-nested. However, for very low top qualities, Collier's (1972) expression for htp yields a value 
which is lower than h,p. Since this is not realistic, it is assumed that htp= hsp in this narrow range 
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Figure 2c. Flow chart (B) of a loop with a given inventory. 

and [27] yields a direct numerical solution for 00. This feature is important and convenient in the 
first stages of  the complete numerical solution of the whole loop. For higher Q, an appropriate 
first guess for 00 can be chosen as the known solution for a somewhat lower power. 

Once the temperature and vapor quality are known, the buoyancy integral [15] can be computed 
and introduced into the momentum equation [14] to yield an implicit algebraic equation for the 
dimensionless mass flow rate, o~. For this the void fraction distribution is needed. E, in the sink 
was assumed to depend linearly on xs, which is a linear function of z, cf. [24b]. Therefore, 

E, (z  - zs)  
e,  = (1 - zs )  [28] 

where el is the top void fraction, el = ec(z = 1). For the source, e¢[x¢(z)] is calculated by [21]. It 
is noted that since the parameters Co and Uo, depend, in general, on E¢, this is an implicit equation 
for E¢. Hence, the numerical solution involves a triple-nested iterative procedure, or quadruple for 
the case of unknown pressure. The numerical method is described in the next section, which also 
includes the final stages of derivation of the buoyancy integral. 

The particular case of a single phase is easier to solve. Here the top boundary condition [20b] 
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is replaced by continuity of the temperature at z = I, and instead of [27] for Oo we get 

1 

1 
The  buoyancy integral [15] is calculated by introducing the distributions [22a] and [24a]: 

[29] 

b s p =  0"5 Nssp [ 
exp - 1 

[30] 

This relation is finally inserted in the momentum equation [14], where the parameter Nbf includes 
the single-phase friction parameter Ksp = 2fL/d. The resulting equation, 

co = [311 

is solved numerically, because both bsp and K~p depend on co. The successive approximations or 
Newton-Raphson method has been used to solve it. Single-phase results are not shown in the 
present paper. Knaani (1990) and Knaani & Zvirin (1990) include some results for the lower range 
of the input power. 

4. N U M E R I C A L  S O L U T I O N  P R O C E D U R E  

Let us consider, first, the case of a loop with a pressurizer, where the pressure is specified and 
determines the saturation temperature, Tsar. The saturation properties such as PL, PO and HLO are 
also determined, and those for the single phases, e.g. viscosity, thermal conductivity and specific 
heat, are taken at /'sat. The algebraic (momentum) equation [14] is solved to obtain the 
dimensionless mass flow rate, co. Then the other loop variables are found: the temperature, quality 
and void distributions and the two-phase elevations, zc and Zs. 

A computer program was developed for the numerical solution. The program is quite general: 
all the calculations requiring specific models, e.g. the flow regimes map and the phenomenological 
correlations, are performed in subroutines, called by the main program. Parts of  the solutions 
obtained analytically, such as the temperature and void fraction distributions and their integrals 
(for the buoyancy term), are also carried out in special subroutines. The program reads the input 
parameters: geometrical (d and L here) and operational (p, Q, Ta) data. The fluid properties 
(see above) are calculated from tables and interpolations in a subroutine. Then the parameters 
which depend only on these properties and the input data are computed (rnsp, St). Initial values 
are chosen as "first guesses" for the dimensionless flow rate, co, and bottom temperature, 00. The 
outer interaction loop is begun with this co; the Reynolds number and then hsp are calculated and 
Ns~p is obtained by [19]. The inner iteration loop to find 00 commences by solving [27] iteratively, 
by the successive approximations method. It is noted that its convergence is guaranteed because 
the absolute value of  the derivative of  the function of  00 on the RHS is < 1 in the whole solution 
range. The loop consists of  the following stages, starting from an initial value of  00: zc is calculated 
from [23], then xt from [25]. The two-phase heat transfer coefficient, htp is computed (from the 
appropriate correlation, in a special subroutine), then [19] is used to find Nstp and z~ is obtained 
from [25]. Finally, a new value for 00 is calculated by [27] and the internal loop is repeated until 
convergence is achieved, for the "current" value of co in the outer loop. As explained above, for 
low Q when evaporation is just beginning (at the very top), hip = hsp and [27] is solved directly. Then 
an initial guess for 00(co) for a certain power is chosen as the solution for the previous, lower, Q. 

Now the parameters in the momentum equation [14] are calculated. The means 0c, 0~, ~~ and 
~s, needed for the buoyancy integral, b, are evaluated. The temperature profiles [22a] and [24a] are 
introduced with 00 into the integrals [16] for 0¢ and 0~, which are obtained analytically: 

( ) O~=zc 00 + ~-~m [32] 



BIFURCATION IN TWO-PHASE NATURAL CIRCULATION 1139 

and 

O0w F (N..,z. kq , ) j .  <,3, 
The mean void fractions ~< and ~, in [16] are calculated in subroutines, using [21], the solutions [22b] 
and [24b] for the qualities and the correlations for UGu and Co. These depend on the two-phase 
flow patterns, determined by the local void fraction, E, and the mixture velocity, V m . Therefore, 
in the subroutine for the heat source the flow regime is checked at every point z according to the 
map, then UGu and Co are computed or determined. The reader is reminded that for some of the 
flow regimes the correlations depend on E, thus an iterative numerical solution is performed to find 
the void fraction, g¢ is found by Simpson's quadrature, after E c is computed at N points, equally 
spaced, in the evaporation portion of the heat source, zc ~< z ~< 1. 

In the subroutine for the sink, the integral for Cs is calculated analytically, from [28]: 

(1 -Zs) 
gs = e,--------~, [341 

where the top void fraction, El, has just been found. It is noted, again, that in the example 
considered here several stages of the solutions (of the differential equations and integrations) were 
done analytically. In other cases, for more practical systems, these would be performed numerically 
in the subroutines. 

The means 0¢, 0~, gc and g~, which depend on co, are introduced in [15] to calculate the buoyancy 
integral, b. The friction parameter, K, is calculated from [4], by using the correlations for f and 
• ~; both depend on co, and the latter, using Chisholm (1967), on the mean vapor quality of the 
two-phase region of the loop. Since the profiles x(z )  are linear, [22b] and [24b], ff = xl/2. Finally, 
Nbr is obtained from [19] and the value of the function F(o~) is computed from [14], in order to 
find the root of this equation. The outer iteration loop is repeated until [14] is satisfied within the 
required accuracy. Then all the converged final values are used, towards the end of the program, 
to evaluate all the output variables: mass flow rate, temperature, quality and void distributions and 
the two-phase elevations. The total loop mass (inventory), is also calculated: 

M = M,p + Mtr , = pLAL(z¢ + Zs) + pLAL{(2 - -  zc - -  Zs) - -  (1 - -  y)[(l - -  z<)g~ + (1 - z~)g~]}. [35] 

For the case of a completely closed system (without a pressurizer), with given inventory Min , 

an additional iteration loop is performed: a value for the pressure is chosen as a first guess, then 
all the computations described above are performed. The value of M, obtained from [35], is 
compared with Mi, and this outermost iteration is repeated until convergence is reached. 

It is noted that [3] is the momentum equation integrated around the whole loop, to eliminate 
the pressure gradient term. Thus, [3] represents a balance of the overall buoyancy driving force and 
the retarding friction force. The pressure distribution can be obtained by integration of [2], after 
completion of the solution for rh, p, E etc. Obviously, p increases and decreases in parts of the loop, 
to complete a cycle. K is then a friction parameter rather than a pressure loss coefficient. Within 
the approximation of the present work and taking into account the uncertainties, an average value 
for ~2 in the whole two-phase region was taken (depending on $). 

As mentioned above, the numerical solution requires double- or triple-nested iteration loops. It 
provides the dimensionless flow rate, co, solving [14] which includes the function F(og). The 
bisection method is employed to solve [14], because F(og) has a very steep slope in some range of 
the system parameters, and other methods, i.e. secant, successive approximations, either would not 
converge or would be quite inefficient. One of the components of F(co) is the dimensionless 
buoyancy integral, b [15]. This integral, which contains the terms, (s, 0s and /7c, is computed 
numerically by the Simpson quadrature for N points of the heat source. 

Table 1 shows the sensitivity of the solution (loop-dependent variables) to N and to the 
convergence criterion, 6o, (see the flow chart in figure 2b), for a specific case and fixed values of 
the other convergence criteria, 6 0 and 6r. As can be seen, these criteria are quite severe, in order 
to overcome the problems resulting from the behavior of F(og) mentioned above, especially in the 
regions of bifurcation and transitions between flow regimes. Fortunately, however, these severe- 
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Table 1. Sensitivity of the numerical solution for the loop-dependent variables to: (a) the grid 
size of the heat source (number of divisions, N); (b) the convergence criterion J~ 

F(09) 09 E t z¢ z~ x I 0 o 

N 
10 -0.0002 0 . 9 0 4 9  0 . 9 7 6 3  0 . 1 3 8 5  0 . 3 7 5 8  0 . 1 2 3 8  0.7371 
50 0.0000 0 . 9 3 3 3  0 . 9 7 5 3  0 . 1 4 2 1  0 . 3 7 6 1  0 . 1 1 9 5  0.7037 

100 0.0001 0 . 9 3 0 7  0.9754 0 . 1 4 1 8  0.3760 0.1199 0.7057 
J,,, 

10 -5 0.0581 0 . 9 3 5 0  0.9752 0.1424 0 . 3 7 6 1  0 . 1 1 9 3  0.7036 
10 -3 -0.0052 0 . 9 3 3 1  0 . 9 7 5 3  0 . 1 4 2 1  0 . 3 7 6 1  0.1196 0.7037 
10 -4 0.0000 0 . 9 3 3 3  0 . 9 7 5 3  0 . 1 4 2 1  0 . 3 7 6 1  0 . 1 1 9 5  0.7037 

d = 0.02 m, p = 1 bar, Q = 24 kW. Convergence criteria (see figure 2b): J~ = 10 -4, J0 = 10-5, 
Jr = 10-3; N = 50 (except when changed). 

measures lead to high accuracy when convergence is reached. This is demonstrated in figure 3, 
showing convergence of F(~o) when N is increased: only very slight differences can be observed 
between the results for N = 50 and 100. 

Knaani (1990) gives more details about the numerical analysis, the convergence patterns and the 
effects of the choice of grid points in the source and of the convergence criteria for the iterations 
loops on the results. As shown above, the solution is very sensitive to these parameters, which is 
reflected, for example, in the steepness of F(co). Therefore, care must be taken, especially in the 
range of bifurcation, as discussed in the next section. 

5 .  R E S U L T S  A N D  D I S C U S S I O N  

The theoretical method developed in this work for describing the steady state in two-phase 
natural circulation was applied to the simple geometry loop (figure 1), in order to demonstrate its 
use and to investigate several phenomena and effects. Knaani & Zvirin (1990) studied the loop 
behavior for various values of the diameter and the input power, mostly at atmospheric pressure, 
without dwelling on the bifurcation phenomenon. In the present paper the main focus is on this 
feature, i.e. the existence of multiple steady-state solutions. The effect of  the pressure on the loop 
characteristics is also studied. Additional results are included in Knaani (1990). 

In the following we shall present the variables obtained from the numerical solutions as functions 
of the input power, Q, and the pressure, p for a loop with height L = 1 m, with diameter in the 
range d = 0.02 to 0.05 m (see figure 1) and secondary temperature T, = 30°C. The output data 
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include the mass flow rate, th, the top void fraction and vapor quality, E~ and x~ (at z = 1), the 
dimensionless two-phase elevations in the heat source and sink, zc and zs, and the bottom 
temperature, To (at z = 0). In all cases (unless otherwise stated), the loop pressure is a known 
constant. The behavior of p for a closed system without a pressurizer and with given inventory 
is also discussed. The reader is reminded that use has been made of the two-phase flow regimes 
map of Kaizerman et al. (1983), with Eb~ = 0"25 and E~ = 0.65 for the transitions between bubbly 
and slug flow and between slug and annular flow. The sensitivity of the results to the selection of 
these values is also investigated. 

5.1. Bifurcation--multiple steady-state solutions 

The steady flow in the loop is governed by [14], which expresses the balance of the buoyancy 
driving force and the retarding friction force. Both depend on the flow rate and on the void and 
quality distributions and through them on the flow regime. The transitions between the various 
regimes are associated with discontinuities of the flow properties, in particular the void fraction 
and quality, which strongly affect the buoyancy and friction forces. These are plotted in figures 
4 and 5 as functions of the flow rate for two examples with fixed d, p, and Q. It is noted that such 
graphs illustrate the behavior of the forces for given loop flows, as if at forced circulation; the 
difference between them would then be the required pumping head. The latter is identically zero 
at natural circulation, when the buoyancy and friction forces are equal, i.e., when their curves 
intersect at points representing the steady-state solutions. A single crossing of the lines means a 
single solution. As shown below, there is a range where bifurcation occurs, i.e. double or triple 
solutions when the lines intersect two or three times due to the nonmonotonous behavior of the 
buoyancy force. As mentioned in the introduction, bifurcation phenomena, emerging from similar 
force dynamics, appear in other two-phase flow systems and also in single-phase thermosyphons. 
Finally, it is noted that if the driving force, dominated here by the input power, is too low, it cannot 
overcome the friction, the force lines do not cross and there is no steady flow solution. Since the 
power is low, this situation is expected to occur in the single-phase (liquid only) range of the loop. 
Zvirin (1985, 1986) obtained critical Rayleigh numbers for the onset of flow in some natural 
circulation loops. 

For the case shown in figure 4 there is a single crossing of the forces lines, indicating one root 
of [14] and a single steady-state solution. As can be seen, slight changes in the values of one or 
the two forces (for different input parameters) would lead to additional solutions, i.e. bifurcation 
or metastable equilibrium. Figure 5 describes, indeed, a situation where three different steady-state 
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solutions exist. The point where the slopes of the curves change drastically corresponds to a 
transition between slug and annular flow, with sharp changes of E and x. The general trend of the 
forces is to decrease when rn increases, because then both E and x diminish, reducing density 
changes on the one hand and the two-phase friction multiplier, 4 2 (which strongly depends on x), 
on the other. Locally, slight opposite trends may occur, as seen for the friction force in figure 5, 
because it also depends on rn 2, and its effect counterbalances that of decreasing 4 2. 

It is noted that the present method describes steady-state flows in the loop. It is incapable of 
predicting the stability of the solutions; for this, either transient simulations of time-dependent 
problems or stability analyses are needed. In cases of multiple solutions in thermosyphons, all, some 
or none of them may be unstable (cf. Mertol et al. 1981). 

The behavior of the mass flow rate, rh. as a function of the power input, Q, is described in figure 6 
for several pressures, in the range where multiple solutions exist. As observed by Knaani & Zvirin 
(1990), there is a local maximum in the curves rh(Q). This phenomenon, which was 
previously found theoretically by Duffey & Sursock (1987) and experimentally by Loomis & Soda 
(1982) and Shimeck & Johnsen (1984) and Serre et al. (1990), is explained by the behavior of the 
buoyancy and friction forces and the two-phase elevations, zc and zs. As Q is increased in the 
two-phase domain (after evaporation starts), both zc and zs start to decrease, with an increasing 
difference between them (as will be seen below), which enlarges the density variations and 
enhances the driving buoyance force, causing a rise in rn. On the other hand, the friction force 
also increases with Q due to the strong dependence of 4 2 o n  the quality, and the decline of 
the circulating inventory, when the loop voids, thus Jh starts to decrease. Duffey & Sursock (1987) 
offer a somewhat different interpretation of the phenomenon, based on the behavior of the 
static pressure differential. The maximum of rh shifts to higher Q when d and p rise (figure 6), 
as expected. When these increase beyond certain limits, the whole loop becomes vapor in 
single phase, before the maximum is reached. Additional results for rh, for wider ranges of d, p 
and Q and including liquid single phase at low Q, appear in Knaani & Zvirin (1990) and Knaani 
(1990). 

As seen in figure 6, there is a rather narrow range where two or three solutions exist. The 
differences between them (for identical input parameters) become smaller with increasing pressure, 
mainly because of the smaller density changes. As explained above, the bifurcation is associated 
with the transitions between two-phase flow regimes, which also explains the oscillatory patterns 
of the curves ~h(Q) for all multiple solutions. It is noted that this bifurcation phenomenon was 
discovered only in regions where the transitions were found to occur. Moreover, a very careful 
treatment of the numerical solution (by increasing the accuracy) showed, indeed, convergence in 
all cases. It was found that by inserting the values obtained from the two or three different solutions 
into the governing equations, these are exactly satisfied. Thus, the multiple solutions are not due 
to numerical effects, but result from physical flow instabilities. The fact that the constitutive 
correlations are not continuous at the points chosen to represent transitions between flow regimes 
indicates that in reality these transitions are exhibited over some ranges, rather than at precise and 
exact limits or boundaries. The transitions fluctuate in these regions, depending on the configur- 
ation of the flow. Various disturbances can trigger the instabilities, causing switches from one flow 
regime to another, with different values of ~h and of the dependent variables. An observer might 
therefore see changes in the flow patterns and measure different values of the parameters associated 
with them. Finally, as mentioned above, thermosyphons and other flow systems exhibit various 
types of bifurcation phenomena. 

Figure 7 illustrates the top void fraction and vapor quality, El and Xl (at z = I), for d = 0.02 m 
and p = 1 bar in the range of Q where multiple steady solutions exist. The types of the three lines 
are identical with those of figure 6, showing that the higher flow rate corresponds to lower void 
and quality, as expected. The latter starts growing sharply in the bifurcation range; this leads to 
a strong rise in the two phase multiplier, 4 2, as explained above, which is the main reason for the 
subsequent drop in rn(Q). In the whole range included in figure 7, the flow is annular at the top 
portion of the loop (E > c~ -- 0.65). For lower values of the input power, ~ and xl exhibits jumps 
at certain critical values of Q (depending on p and d), when transitions from bubbly to slug flow 
and slug to annular flow take place (cf. Knaani & Zvirin 1990). For higher pressures, the annular 
pattern is obviously established at higher powers. 
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The void fraction distributions in the heat source (zc ~< z ~< 1) and sink (Zs ~< z ~< 1) for a loop 
with d = 0.04 m, p = 1 bar and Q = 38 kW, are described in figure 8, which also shows the 
sensitivity of the results to the selection of the flow regimes map, discussed below. In the example 
considered here, the two-phase flow in the riser commences in a bubbly pattern, then switches to 
slug flow and later to the annular regime, with discontinuities at the transitions. In the downcomer, 
where the vapor condenses, a linear profile of E(z) was assumed, as explained in section 2. This 
line is traced only once in the figure. 

Figure 9 shows the multiple solutions for the two-phase elevations in the heat source and sink, 
zc and zs. Both decrease monotonically at low powers, then sharply in the neighborhood of the 
maximum flow rate. z, is always larger than zc, indicating a shorter condensing length in the 
downcomer than evaporation in the riser. This is due to the higher heat transfer coefficient, htp , 
in the former, htp increases with the quality, therefore at higher powers zs decreases more moderately 
than zc. Figure 10 describes the bottom temperature, To, for the same loop parameters as above. 
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5.2. Pressure effects 

When the loop pressure is given, i.e. fixed by a pressurizer, the saturation temperature is 
determined along with all other fluid properties. The solution for steady-state flow is obtained as 
explained above. Results for the loop variables as functions of the pressure in the range 1-10 bar 
are presented for d = 0.02 m and three different values of the power input, Q. In cases of multiple 
solutions only one is taken here, with the highest flow rate, rh. 

Figure 11 shows the pressure effect on rh. A local maximum in the curves rh (p) is observed; this 
phenomenon, similar to that detected above for rh(Q), is explained, again, by the behavior of the 
forces. The friction is reduced when p increases, mainly because the two-phase multiplier decreases 
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sharply with the quality, which drops steeply when p rises, cf. figure 12. On the other hand, the 
difference between the two-phase elevations, zs and zc, increases at low pressures (figures 13 and 
14) causing a strong increase in re(p), then becomes almost constant at high pressures, leading to 
a moderate decrease in m. 

As can be seen from figure 12, the void fraction decreases when p increases, as expected. The 
flow in the upper portion of the loop is annular at low pressures, small diameters and large powers. 
As p becomes higher and for larger d and lower Q the flow there does not enter the annular regime; 
it remains slug, bubbly or single phase (liquid). As mentioned above, the transitions between the 
flow patterns are associated with discontinuities, as seen in the behavior of El (figure 8). The sharp 
jumps tend to become moderate for higher pressures, because the differences between the properties 
of the phases are smaller. The two-phase elevations, described in figures 13 and 14, are obviously 
smaller (larger two-phase portions) at lower p, with zc < z,, as explained in section 4, Az is large 
in this pressure range, yielding the strong buoyancy and rapid increase in the flow rate, discussed 
above. 

The behavior of the bottom temperature, figure 15, may seem somewhat surprising at first glance. 
The steep increase of To with p at low pressures is explained by the rise in the saturation 
temperature, Tat enabling the fluid to reach higher temperatures. At some point To(p) attains a 
maximum, earlier at lower Q; this point coincides with that where the top void fraction starts to 
decrease significantly, see figure 12. The "cooling" in this pressure range is made possible because 
the flow rate, m, is near its maximum; the heat transfer coefficient, htp, is high, thus the heat can 
be removed to the secondary side in a shorter distance. As p is increased further, m decreases (as 
shown above), and the temperature rises again. 

When the thermosyphon system is completely closed (without a pressurizer), the steady state is 
determined by the specified inventory (total mass), M. The solution is then performed by the 
computer program with the outermost iteration procedure: guessing p (and reading all the 
properties from a subroutine), running the inner program to find the solution for this pressure, then 
calculating M and comparing with the given value, until convergence is achieved. The results are 
shown in figure 16, giving p(M) for several Q values and d = 0.02 m. This figure (or similar ones 
for other values of Q and d) can be used to obtain the pressure, p, cf. the inventory, M, is known. 
Then the steady-state variables (m, q ,  Xl etc.) can be found from the figures presented earlier. 
Complete agreement of the steady-state results was obtained by running the program in the two 
modes (given p and given M). 

Figure 16 shows, as expected that for a given inventory the pressure increases with the power. 
This can be explained on the basis of the rise of T,t with p. Another interesting phenomenon 
observed from the figure is the plateau reached for M(p) at high pressures. This follows from the 
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behavior of the two-phase elevations (figures 13 and 14); zc and zs increase with p until a certain 
value, where boiling in the heat source starts only near the top. Then most of the loop is single 
phase and the effect of  the narrow two-phase portion on the total mass becomes weak. 

5.3. Sensitivity to the choice of the flow regimes map 

The reader is reminded that the theoretical method and numerical procedure developed in this 
work are general and can be used to obtain steady-state solutions with any one-dimensional 
two-phase flow model. Here the drift-flux model was employed to demonstrate application of the 
method, with the flow regimes map of  Kaizerman et al. (1983) and heat transfer and friction 
correlations as described in section 2. The flow regimes map includes transitions from bubbly to 
slug flow, and slug to annular patterns at certain values of the void fraction. These, chosen 
"nominally" as ~bs = 0.25 and E~a = 0.65, are somewhat arbitrary; in reality the transitions would 
occur over a finite range of  the parameters which also depend on various perturbations. 

As an example to illustrate the sensitivity of the results to the choice of the flow regimes map, 
figure 8 illustrates the behavior of  the void fraction distribution in the heat source for three different 
values of e~a (the other parameters are kept at their nominal values). It is seen that zc decreases 
and El increases when Esa is larger. This is explained as follows: when the transition to annular flow 
is delayed, the values obtained for the void fraction immediately after the switch are larger, because 
of  the behavior of  the correlations for Co and Ucu. The resulting rise in El (at the top, z = 1) causes 
an increase in the distance needed for condensation (1-zs) and a reduction in the sink two-phase 
elevation. The buoyancy force becomes smaller, also the flow rate and therefore zc reduces too. 

Figures 17 and 18 show the sensitivity of  the solution for rh (Q) to the choice of the flow regimes 
map: the values of  the void fractions of the transition between slug and annular flow (E~a) in figure 
17 and that between bubbly and slug flow (Ebs) in figure 18. As E~ is increased, the maximum flow 
rates become smaller and shift to the left, i.e. at lower values of  the input power (figure 17). As 
mentioned above, when E~ is raised the buoyancy force decreases, and consequently the values of  
z~ and z~ also become smaller. Thus, x¢ and x~ increase, leading to a larger value of the two-phase 
multiplier ~2, indicating augmented friction. The combination of  the two effects--lower buoyancy 
and higher friction--evidently yields reduced velocity and flow rate. On the other hand, when ~ 
is maintained constant and Eb~ is increased, only a slight decrease in the maximum rn is caused (figure 
18). The reason for this behavior is that the void at the loop top is not very sensitive to the value 
of Ebs, determining the transition between bubbly and slug flow (which takes place at a relatively 
lower elevation). Therefore, z¢, z~ and x~, x~ are not greatly affected and only small changes are 
felt by the buoyancy and friction forces. 
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choice of E~ in the flow regimes map. 

0.155 -- d=0.02 m,p=l bar 

o~ 
d 

• ~ ~bs 
~ o.20 \ 

0.25 \ 
0.30 

0.105 I I l I 
14.0 14.5 15.0 15.5 16.0 

Input power, Q (kW) 

Figure 18. Mass flow rate vs input power; sensitivity to 
selection of Eb~ in the flow regimes map. 
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Table 2 includes results for the loop variables (with d = 0.02 m and p = 2 bar), as functions of  
the input power for various choices of  the transition values of  Eb~ and E, in the flow regimes map. 
The table shows the sensitivity of  the multiple steady solutions to the choice of  the map. As can 
be seen from table 2 the value of  e~ has a weak effect on the results, while that of Esa affects the 
solution quite significantly. For example, the maximum flow rate, rh, is lower for larger E~ (0.70), 
and occurs at a smaller power. The reason for this is probably due to the reduced buoyancy when 
the transition to annular flow, with more void, is delayed. Similar results were obtained by Knaani 
& Zvirin (1990) for atmospheric pressure. It is also interesting to note that, for this higher value 
of  E~, the range of  multiple solutions shrinks (a single one is found for Q = 23 kW). Obviously, 

Table 2. Sensitivity of  the multiple steady-state solutions for the mass flow rate, n~, bottom temperature, T 0, top void fraction 
and vapor quality, ~ and xl,  and dimensionless two-phase source and sink elevations, z¢ and z~, to the choice of the 

two-phase flow regimes map (d = 0.02 m, p = 2 bar) 

~:0.25 0.25 0.20 0.30 0.25 0.25 0.20 0.30 
Q(kW) E~:0.65 0.60 0.70 0.65 0.65 0.60 0.70 0.65 

th (kg/s) T O (°C) 

14.00 0.0943 0.0947 0.0950 0.0945 0.0941 88.9 88.7 88.5 88.8 89.0 
16.00 0.1101 0.1106 0.1107 0.1104 0.1099 89.9 89.7 89.7 89.8 90.0 
18.00 0.1260 0.1265 0.1251 0.1262 0.1257 91.0 90.8 91.4 90.9 91.1 
20.00 0.1417 0.1422 0.1405 0.1419 0.1413 92.1 91.9 92.6 92.0 92.2 

22.00 0.1341 0.1351 0.1326 0.1341 0.1316 104.2 104.2 104.2 104.2 104.2 
22.00 0.1414 0.1410 0.1428 0.1404 0.1414 101.7 102.1 100.7 102.6 101.7 
22.00 0.1565 0.1570 0.1544 0.1565 0.1559 93.6 93.3 94.4 93.5 93.8 

23.00 0.1136 0.1340 0.1318 0.1336 0.1310 104.4 104.4 104.3 104.4 104.3 
23.00 0.1539 0.1531 0.1526 0.1547 99.0 99.5 99.7 98.5 
23.00 0.1622 0.1635 0.1630 0.1617 94.9 94.4 94.6 95.1 

24.00 0.1318 0.1328 0.1307 0.1318 0.1318 104.5 104.5 104.5 104.5 104.5 
26.00 0.1274 0.1280 0.1263 0.1274 0.1274 104.8 104.8 104.8 104.8 104.8 
28.00 0.1224 0.1227 0.1214 0.1224 0.1224 105.0 105.0 105.0 105.0 105.0 
30.00 0.1165 0.1168 0.1158 0.1165 0.1165 105.1 105.1 105.1 105.1 105.1 

E I X! 

14.00 0.8195 0.8051 0.6509 0.8130 0.8273 0.0071 0.0064 0.0060 0.0068 0.0075 
16.00 0.8288 0.8158 0.6748 0.8226 0.8340 0.0077 0.0070 0.0068 0.0073 0.0080 
18.00 0.8411 0.8315 0.8558 0.8369 0.8462 0.0086 0.0080 0.0098 0.0083 0.0090 
20.00 0.8567 0.8500 0.8706 0.8531 0.8616 0.0100 0.0094 0.0114 0.0097 0.0105 

22.00 0.9587 0.9583 0.9592 0.9587 0.9596 0.0437 0.0431 0.0444 0.0437 0.0450 
22.00 0.9470 0.9481 0.9434 0.9495 0.9470 0.0351 0.0360 0.0325 0.0372 0.0351 
22.00 0.8787 0.8739 0.8943 0.8781 0.8832 0.0126 0.0119 0.0150 0.0125 0.0132 

23.00 0.9612 0.9610 0.9617 0.9612 0.9620 0.0477 0.0475 0.0487 0.0477 0.0492 
23.00 0.9338 0.9363 0.9376 0.9312 0.0270 0.0283 0.0290 0.0258 
23.00 0.8980 0.8893 0.8929 0.9010 0.0158 0.0142 0.0148 0.0163 

24.00 0.9636 0.9633 0.9639 0.9636 0.9636 0.0525 0.0519 0.0532 0.0525 0.0252 
26.00 0.9677 0.9675 0.9680 0.9677 0.9677 0.0630 0.0625 0.0638 0.0630 0.0630 
28.00 0.9709 0.9709 0.9712 0.9709 0.9709 0.0746 0.0743 0.0754 0.0746 0.0746 
30.00 0.9739 0.9738 0.9740 0.9739 0.9739 0.0879 0.0876 0.0885 0.0879 0.0879 

Z c Zs 

14.00 0.8949 0.9049 0.9108 0.8996 0.8889 0.9128 0.9213 0.9263 0.9168 0.9075 
16.00 0.8833 0.8937 0.8959 0.8884 0.8786 0.9021 0.9112 0.9131 0.9066 0.8981 
18.00 0.8673 0.8768 0.8503 0.8716 0.8618 0.8876 0.8960 0.8725 0.8914 0.8827 
20.00 0.8443 0.8528 0.8236 0.8489 0.8374 0.8666 0.8742 0.8479 0.8708 0.8604 

22.00 0.4141 0.4169 0.4100 0.4141 0.4072 0.4489 0.4493 0.4484 0.4489 0.4481 
22.00 0.5030 0.4916 0.5361 0.4776 0.5030 0.5310 0.5190 0.5656 0.5043 0.5310 
22.00 0.8035 0.8125 0.7688 0.8046 0.7945 0.8289 0.8372 0.7966 0.8300 0.8207 

23.00 0.3900 0.3909 0.3852 0.3900 0.3833 0.4428 0.4429 0.4422 0.4428 0.4420 
23.00 0.6024 0.5853 0.5762 0.6187 0.6334 0.6160 0.6066 0.6499 
23.00 0.7555 0.7779 0.7692 0.7470 0.7838 0.8049 0.7967 0.7757 
24.00 0.3651 0.3677 0.3624 0.3651 0.3651 0.4368 0.4371 0.4365 0.4368 0.4368 
26.00 0.3204 0.3219 0.3180 0.3204 0.3204 0.4262 0.4263 0.4259 0.4262 0.4262 
28.00 0.2823 0.2830 0.2802 0.2823 0.2823 0.4169 0.4170 0.4167 0.4169 0.4169 
30.00 0.2485 0.2491 0.2473 0.2485 0.2485 0.4087 0.4087 0.4086 0.4087 0.4087 
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the transition values Ebs and E, affect the void distribution as seen in figure 6, but for higher powers 
the differences between the results for various Ebs and Esa become smaller (table 2). This follows from 
the fact that annular flow then prevails in large portions of the loop. Both the buoyancy and friction 
forces are dominated by the high values of the void and quality in these areas. 

It is emphasized that the choice of the limiting values of Ebs and E~a in the flow regime map is 
rather arbitrary. As mentioned above, in reality the transitions between regimes occur over some 
ranges of the parameters and are triggered by some disturbances. The sensitivity analysis presented 
here can be considered as an initial attempt to explain and study the related phenomena. 

5.4. Comparison with data 

Two main results of the present analysis for two-phase natural circulation, discussed in section 
5.1, are the bifurcation (multiple steady solutions) and the local maximum in the curves of the flow 
rate, rh, as a function of the input power, Q. As mentioned above, these phenomena have been 
observed experimentally and found theoretically not only in such systems but also in single-phase 
thermosyphons and in other two-phase flows. 

Here another important aspect is presented and discussed, namely the behavior of the flow rate, 
rn, as a function of the loop inventory, M L  It is convenient to represent the steady-state loop 
characteristics by the curves rh(MI)  (cf. Duffey & Sursock 1987). As indicated by Calastri et al. 
(1990), Juhel et al. (1990) and Serre et al. (1990), these curves can also be used for scaling purposes. 
This is quite important in designing and analyzing experiments with scaled models of large loops 
(cf. Ishii et al. 1986; Zvirin & Sursock 1987). 

Figure 19 includes curves of the mass flow rate vs the loop inventory for three different values 
of the input power. When the inventory decreases from 100% (single phase), rn rises to a maximum 
and then decreases. This is expected, because when M I  is decreased from "water solid" and the 
loop is more voided, the buoyancy driving force becomes stronger, due to the larger density 
differences. At high voids (lower inventories) the friction losses counterbalance the buoyancy, 
increasing more rapidly and reducing the flow rate. When the loop inventory is small, rn decreases 
below the single-phase value. These results of the present method, shown in figure 19, agree with 
the behavior of prototypes and models of two-phase natural circulation loops, as illustrated in the 
data presented by Duffey & Sursock (1987), Juhel et al. (1990), Serre et al. (1990) and Calastri et 
al. (1990). There are some differences between the behavior of the loop treated here and the loops 
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considered in these references. Firstly, when MI is decreased from 100% the rise of rh is almost 
immediate here, while in the data it is moderate (plateau-like), with a sharp increase in MI = 90 
to 95%. This is explained by the different geometries: here, with the simplified loop consisting of 
two vertical pipes, small voids lead to large density differences and strong driving buoyancy forces; 
in the experimental loops, with geometries of nuclear reactor systems, the bulk of the fluid is 
contained in the reactor vessel, so larger voids are needed to create significant buoyancy forces for 
driving relatively larger liquid masses. The differences in the geometries of the present simplified 
thermosyphon and the loops considered in the above references also lead to the different location 
of the peaks in the curves th(MI). They are at smaller values here (MI = 70-75%) than in the 
experimental systems, mostly in the range 75-82%. Here the effect of the friction is sensed more 
rapidly, because of the larger ratio of tube surface to loop volume. However, in the neighborhood 
of the peak, the curves here are more flattened, due to the stronger buoyancy influence mentioned 
above. Finally, the references cited here show some numerical results obtained from computer 
codes used to simulate reactor cooling loops. The general agreement between these and the data 
are also quite good, but many differences still appear. 

6. SUMMARY 

A general and consistent theoretical method was developed to study the steady-state flow and 
heat transfer in two-phase thermosyphons. Numerical calculations were carried out, using the 
one-dimensional drift-flux model and flow regimes map. Results have been presented to investigate 
the effect of the loop geometry, the pressure and the input power on the loop variables, e.g. flow 
rate, void quality and temperature distributions and two-phase elevations. 

The loop exhibits bifurcation characteristics, i.e. there exist multiple steady-state solutions in a 
certain range of the parameters. This phenomenon has obvious impacts on the operation of 
practical loops such as energy conversion systems, and in particular emergency core cooling of 
nuclear reactors. Several other important and interesting results have been observed, including the 
appearance of a local maximum of the flow rate curves as functions of the input power and of the 
pressure. A comparison with available data has shown that these results follow the behavior and 
trends of experimental loops, and the general appearance of code predictions. The sensitivity of 
the results to the choice of the flow regimes map was also investigated. The results indicate the 
applicability of the method, which can be used in the design of efficient stable loops and prediction 
of their performance. 

As explained above, a theoretical-numerical analysis of a thermosyphon, taking into account the 
various two-phase flow regimes and patterns, is quite complicated. Therefore, treatment of a simple 
geometry loop (figure 1) was chosen as the first stage in developing the method. Following the 
demonstration that it can describe the loop behavior, it is planned, in the next stage of the research 
program, to investigate transient flows in systems representing more realistic loops, and also to 
study their stability. 
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